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Due to the clinical continuum of Alzheimer’s disease (AD), the accuracy of

early diagnostic remains unsatisfactory and warrants further research. The

objectives of this study were: (1) to develop an effective hierarchical multi-

class framework for clinical populations, namely, normal cognition (NC), early

mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI),

and AD, and (2) to explore the geometric properties of cognition-related

anatomical structures in the cerebral cortex. A total of 1,670 participants

were enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database, comprising 985 participants (314 NC, 208 EMCI, 258 LMCI, and

205 AD) in the model development set and 685 participants (417 NC, 110

EMCI, 83 LMCI, and 75 AD) after 2017 in the temporal validation set. Four

cortical geometric properties for 148 anatomical structures were extracted,

namely, cortical thickness (CTh), fractal dimension (FD), gyrification index

(GI), and sulcus depth (SD). By integrating these imaging features with Mini-

Mental State Examination (MMSE) scores at four-time points after the initial

visit, we identified an optimal subset of 40 imaging features using the

temporally constrained group sparse learning method. The combination of

selected imaging features and clinical variables improved the multi-class

performance using the AdaBoost algorithm, with overall accuracy rates

of 0.877 in the temporal validation set. Clinical Dementia Rating (CDR)

was the primary clinical variable associated with AD-related populations.

The most discriminative imaging features included the bilateral CTh of the

dorsal part of the posterior cingulate gyrus, parahippocampal gyrus (PHG),

parahippocampal part of the medial occipito-temporal gyrus, and angular

gyrus, the GI of the left inferior segment of the insula circular sulcus, and the
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CTh and SD of the left superior temporal sulcus (STS). Our hierarchical multi-

class framework underscores the utility of combining cognitive variables with

imaging features and the reliability of surface-based morphometry, facilitating

more accurate early diagnosis of AD in clinical practice.

KEYWORDS

Alzheimer’s disease, diagnosis, multi-class classification, magnetic resonance
imaging, surface-based morphometry

Introduction

The total number of people experiencing dementia
worldwide is estimated to increase from 57.4 million in 2019
to 153 million in 2050 (GBD 2019 Dementia Forecasting
Collaborators, 2022). Alzheimer’s disease (AD) is a major cause
of disability and dependency among the elderly. Currently,
there is a lack of effective treatment to slow AD progression,
and autopsy constitutes the only medically confirmed diagnosis
of AD, highlighting the urgent need for early diagnosis
(Alzheimer’s Association, 2022).

As an established precursor of AD, mild cognitive
impairment (MCI) can be divided into early mild cognitive
impairment (EMCI) and late mild cognitive impairment
(LMCI), according to the degree of episodic memory
impairment (Aisen et al., 2010). Individuals with LMCI
present with more severe cognitive impairment compared
to those with EMCI (Aisen et al., 2015). However, various
resources exist for pooling patients with either EMCI or
LMCI into a single large MCI group, thereby precluding a
better understanding of the underlying mechanisms for MCI
progression (Moore et al., 2019). Despite significant efforts
to ensure a rapid and rigorous diagnosis of AD, personalized
multi-class diagnosis across the entire spectrum of AD remains
a significant challenge. The accuracy of early diagnosis of AD
remains unsatisfactory and warrants further research, due to
the nature of the clinical continuum (Aisen et al., 2010).

The deep folds of the cerebral cortex allow half to two-thirds
of the cortical surface to be hidden in the sulci and lateral fossa
(Essen, 2005). Even trained anatomists may find it challenging
to manually label sulcogyral structures in the complex folded
anatomy of the cerebral cortex. Alzheimer’s disease is a
progressive disease that typically invades spatially adjacent
rather than isolated areas (Vemuri et al., 2008). Therefore, given
the vulnerability of cortical regions to AD-related pathological
changes, careful consideration of local spatial continuity and
precise localization of sulcogyral structures in the cerebral
cortex may be more conducive to interpret morphological and
functional changes during AD progression (Liu et al., 2015). At
present, the relationship between cortex geometry and cognitive
dysfunction remains obscure.

We hypothesized that machine learning (ML) approaches
applied to subsets of neuroimaging and clinical variables could
distinguish between AD-related populations. The objectives
of this study were: (1) to develop an effective classification
framework for clinical populations, namely, normal cognition
(NC), EMCI, LMCI, and AD and (2) to explore the geometric
properties of cognition-related anatomical structures in the
cerebral cortex.

Materials and methods

Study sample

This study used data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database1. The ADNI was
launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. For the ADNI study, written informed consent
was obtained for all participants and the study protocol was
approved by the institutional review board at each participating
center before protocol-specific procedures were performed.

Taking 2017 as the cut-off time point, the data from
the ADNI database were divided into two parts: the “model
development set” and the “temporal validation set.” For the
model development set, we screened participants on the basis
of structural MRI scans and corresponding MMSE scores at
four-time points after their initial visit; the cognitive state of
all participants remained stable over time, including those with
NC EMCI, LMCI, and AD. A total of 1,670 participants were
enrolled in this study, comprising 985 participants (314 NC,
208 EMCI, 258 LMCI, and 205 AD) in the model development
set and 685 participants (417 NC, 110 EMCI, 83 LMCI, and
75 AD), enrolled after 2017, in the temporal validation set.

1 adni.loni.usc.edu
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Demographic characteristics (age, sex, length of education,
and marital status), apolipoprotein E (APOE) genotypes, and
clinical assessment scores [Clinical Dementia Rating (CDR) and
Functional Activities Questionnaire (FAQ)] at baseline were
obtained for all participants (Table 1).

The general inclusion/exclusion criteria were as follows:
participants in the NC group had a Mini-Mental State
Examination (MMSE) score between 24 and 30 (inclusive)
and a CDR score of 0, without significant impairments in
cognition or activities of daily living. Early mild cognitive
impairment participants exhibited mild cognitive decline, with
a CDR score of 0.5, MMSE score between 24 and 30
(inclusive), and objective memory loss as identified using
the delayed recall of one paragraph from the Wechsler
Memory Scale Logical Revised Memory II (WMS-R II)
(adjusted for age and length of education: ≥16 years, 9–11; 8–
15 years, 5–9; 0–7 years, 3–6). Late mild cognitive impairment
participants had poorer objective memory, as measured with
the WMS-R II (adjusted for age and length of education:
≥16 years, ≤8; 8–15 years, ≤4; 0–7 years, ≤2). The AD
diagnosis was based on the NINCDS/ADRDA criteria. For
more detailed information, refer to http://www.adni-info.org/
Scientists/ADNIGrant/ProtocolSummary.aspx.

Overview of the multi-class framework

The multi-class framework consisted of three parts:
MRI feature extraction, optimal feature subset selection,

and hierarchical multi-class classification, as shown
in Figure 1. First, a fully conditional specification
method was used for multiple imputations of missing
data of clinical features, and we extracted the cortical
geometric properties of each anatomical structure from
neuroimaging scans in the entire data set. Second, imaging
data in the model development set were integrated
with MMSE scores at the corresponding time points to
capture discriminative imaging features by introducing
a regression task. Third, based on the selected imaging
features, clinical variables, and their multiple combinations
at baseline, several ML algorithms and 10-fold cross-
validation were used to implement a hierarchical four-way
classification for the model development set, and the
optimal model was applied to the temporal validation set
for blind testing.

Magnetic resonance imaging
acquisition

All structural MRI scans were converted from raw
Digital Imaging and Communications in Medicine files
to the Neuroimaging Informatics Technology Initiative
format using MRIcro software. Subsequently, all images
were preprocessed and subjected to motion correction,
non-brain tissue removal, segmentation, intensity
normalization, tessellation of gray and white matter
boundaries, topology correction, and spatial smoothing

TABLE 1 Demographic and clinical assessments in the model development and temporal validation sets.

Data set Variable NC (n = 314) EMCI (n = 208) LMCI (n = 258) AD (n = 205)

Model development (n = 985) Age (years) 74.22± 5.73 71.34± 7.58 73.49± 7.36 74.62± 7.88

Sex (male) 160 (50.96) 88 (42.31) 105 (40.70) 94 (45.85)

Length of education (years) 16.23± 2.69 16.11± 2.75 15.98± 2.82 15.24± 2.88

Marital status (married) 214 (68.15) 161 (77.40) 194 (75.19) 172 (83.90)

APOEε4 carriers 74 (23.57) 66 (31.73) 90 (34.88) 98 (47.80)

CDR 0.04± 0.14 1.21± 0.69 1.45± 0.85 4.26± 1.53

FAQ 0.17± 0.69 1.88± 3.02 2.76± 3.75 12.92± 6.51

MMSE 29.19± 1.04 28.28± 1.57 27.68± 1.69 23.24± 2.30

Temporal validation (n = 685) Variable NC (n = 417) EMCI (n = 110) LMCI (n = 83) AD (n = 75)

Age (years) 70.94± 6.22 71.16± 6.66 71.70± 8.20 73.90± 8.00

Sex (male) 242 (58.03) 47 (42.73) 34 (40.96) 31 (41.33)

Length of education (years) 16.85± 2.33 16.18± 2.76 16.08± 2.66 15.75± 2.48

Marital status (married) 307 (73.62) 88 (80.00) 61 (73.49) 59 (78.67)

APOEε4 carriers 132 (31.65) 37 (33.64) 35 (42.17) 45 (60.00)

CDR 0.07± 0.25 1.22± 1.02 1.54± 1.02 5.61± 2.79

FAQ 0.24± 0.89 2.41± 4.09 3.46± 3.84 15.55± 8.04

MMSE 29.10± 1.15 28.26± 1.77 27.48± 2.18 21.87± 4.49

NC, normal cognition; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; CDR, clinical dementia rating; FAQ, functional activities
questionnaire; MMSE, mini-mental state exam.
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FIGURE 1

Overview of the hierarchical multi-class framework. AD, Alzheimer’s disease; MCI, mild cognitive impairment; EMCI, early mild cognitive
impairment; LMCI, late mild cognitive impairment; NC, normal cognition; MRI, magnetic resonance imaging; DICOM, digital imaging and
communications in medicine; NIFTI, neuroimaging informatics technology initiative; CDR, Clinical Dementia Rating; FAQ, Functional Activities
Questionnaire; MMSE, mini-mental state exam; KNN, K-nearest neighbor; LR, logistic regression; NB, naive Bayes; RF, random forest; SVM,
support vector machine; AUC, area under the curve.

using CAT122 operated in SPM123 and implemented in
MATLAB 2013a. Central surface evaluation algorithms
can automatically correct artifacts and defects during
reconstruction, and the results were not different from
those obtained using FreeSurfer, supporting the credibility

2 http://www.neuro.uni-jena.de/cat/

3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

of our findings (Yotter et al., 2011a; Dahnke et al.,
2013).

Magnetic resonance imaging feature
extraction

We used the Destrieux parcellation protocol proposed
in August 2009 (Destrieux et al., 2010), which involves
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complete parcellation of cortical surfaces with anatomical
rules and nomenclature available in the FreeSurfer package
(FreeSurfer v4.5, aparc.a2009s), with 74 anatomical structures
per hemisphere. We calculated four cortical geometric
properties corresponding to each anatomical structure, namely,
cortical thickness (CTh), fractal dimension (FD), gyrification
index (GI), and sulcus depth (SD). The CTh calculation adopted
an automatic projection-based thickness measurement method
(Dahnke et al., 2013). Sulcus depth was calculated according
to the Euclidean distance between the central surface and its
convex hull. The GI and FD were calculated based on absolute
mean curvature and spherical harmonics, respectively (Yotter
et al., 2011b). In total, 592 imaging features were obtained for
each participant at each time point.

Magnetic resonance imaging feature
selection

Given the high dimensionality and poor accessibility of
longitudinal neuroimaging data, sparse regression methods
are widely used for feature dimension reduction (Yang et al.,
2019). In the current study, imaging features and MMSE scores
in the model development set were regarded as regressors
and target response values, respectively. We used temporally
constrained group sparse learning (tgLASSO) to create
regression models with the aim of selecting the optimal subset
of imaging features for subsequent classification tasks (Zhang
et al., 2012). Each subject has different imaging features at
T time points. Xj and yj denote the imaging features and
corresponding MMSE scores, respectively. Here, the key goal
of tgLASSO was to incorporate the group regularization and
smoothness regularization terms into the objective function:
min
W
= J (W) = 1

2
∑T

j=1
∣∣∣∣yj−Xjwj

∣∣∣∣2
2 + Rg (W)+ Rs (W). The

group regularization parameter Rg (W) = λ1 ||w|| 2,1 controlled
the group sparsity of the linear models. Imaging features from
multiple time points were employed to combine the weights
of different time points in the same anatomical region with
the regularization item, to jointly select features based on
the strength of different time points. Further, two smooth
regularization terms were added to the objective function to
reflect smooth changes between data from adjacent time points:
Rs (W) = λ2

∑T−1
j=1

∣∣∣∣wj − wj+1
∣∣∣∣

1 + λ3
∑T−1

j=1 ||Xjwj − Xj+1

wj+1||
2
2. The fused smoothness term λ2

∑T−1
j=1

∣∣∣∣wj − wj+1
∣∣∣∣ 1

, which originated from fused LASSO, constrained small
differences between two successive weight vectors from
adjacent time points (Zille et al., 2017). The output smoothness
termλ3

∑
j=1

T−1
∣∣∣∣Xjwj − Xj+1wj+1

∣∣∣∣ 2
2 , which also required

small differences between the outputs of two successive models
from adjacent time points (i.e., the anatomical structures
sensitive to different stages of AD), was filtered out. These
two smoothness regularization terms balanced the relative
contributions and controlled the smoothness of the linear

models. It should be noted that the tgLASSO method was only
used for MRI feature selection in the model development set
and not for the entire data set. After a number of attempts, the
final regularization parameters λ1 , λ2 , and λ3 were set at 0.25,
0.08, and 0.04, respectively.

Multi-class classification

Hierarchical framework
The optimal subset of cognition-related imaging

features was selected–using the tgLASSO method–as the
“imaging” features for the classification tasks. Demographic
characteristics, APOE genotypes, and clinical assessment
scores (FAQ, MMSE, and CDR) were combined as “clinical”
features. The combination of the above two feature types then
yielded new features, which we labeled “clinical + imaging”
features. Considering that CDR and MMSE scores were
key characteristics used to categorize participants in the
ADNI database, we added two classification features for our
sensitivity analysis. The “clinical_r” features referred to the
“clinical” features except MMSE and CDR scores, and the
“clinical_r + imaging” features referred to the combination
of “clinical_r” and “imaging” features. We created four
hierarchical multi-class scenarios and transformed the four-way
classification into three binary classification tasks using a
hierarchical process, as shown in Figure 1.

The four hierarchical multi-class scenarios were
“NC-EMCI-LMCI-AD,” “AD-LMCI-NC-EMCI,” “AD-LMCI-
NC-EMCI,” and “AD-NC-EMCI-LMCI.” For example, in the
AD-LMCI-NC-EMCI scenario, AD was considered one class,
and NC, EMCI, and LMCI were considered another class
(“Others”). These two classes were trained on the first classifier
to obtain AD candidates. Subsequently, LMCI was considered
one class, and NC and EMCI were considered another class.
These two classes were trained on the second classifier to obtain
LMCI candidates. Finally, the third classifier was trained to
distinguish NC from EMCI. The final classification results for
each participant were obtained using these binary classifiers.

Given that the sample imbalance in multiple binary
classifications tends to result in suboptimal classification
performance, the synthetic minority oversampling technique
was embedded to resample raw features in the model
development set and to create synthetic minority class samples
for improving model performance (Chawla et al., 2011).
The minority class was oversampled by introducing random
linear interpolation between each data sample point and
its k-nearest neighbors (KNNs). In this study, k was set
at 10. We implemented different classification tasks based
on the five features (i.e., “clinical,” “clinical_r,” “imaging,”
“clinical + imaging,” and “clinical_r + imaging”) defined
earlier in four different scenarios, and evaluated and compared
classification performance.
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Classification algorithms
Machine learning can overcome the “dimensionality curse”

and thus permits the learning of complex and subtle changes
from well-generalized training samples, thereby enabling us to
identify patterns in new test samples (Mishra and Li, 2020). We
employed multiple ML methods for model development, that
is, AdaBoost, bagging, k-nearest neighbor, logistic regression
(LR), naive Bayes (NB), random forest (RF), and support vector
machine (SVM) algorithms.

AdaBoost is an ensemble learning algorithm based on
boosting, characterized by sequential training of base classifiers
(Vong and Du, 2020). At each iteration, the weight distribution
of training samples is considered to ensure that larger weights
are featured to misclassified samples under the earlier iterations,
and final classification results are obtained by weighted majority
voting of base classifiers.

Bagging classifiers use the bootstrap method to create
various data subsets from the main training data, and final
outputs are voted by all base classifiers learning in parallel (Lin
et al., 2022).

The KNN method is an extension of the nearest neighbor
algorithm based on supervised learning, which compares test
samples with similar training samples through analogical
learning, and describes “closeness” using distance metrics like
Euclidean distances (Hu et al., 2016). Classification results are
determined by a majority vote of k neighbors.

An LR algorithm is a statistical probabilistic binary
classifier that applies the logit function to perform linear
transformations to obtain the highest posterior probability of
one of the two classes.

Naive Bayes classifiers are probabilistic classifiers based
on Bayes’ theorem, which estimates the prior probability of
training samples belonging to each class and the posterior
probability of test samples belonging to each class, and then
classifies them according to the maximum posterior probability
(Sugahara and Ueno, 2021).

Random forest algorithms represent an ensemble of
different decision trees, whose main parameters are the number
of trees in the “forest” and variables used in the node decision
split. Each node split usually depends on different subsamples of
randomly selected features (Rigatti, 2017).

Support vector machine projects the target data into a high-
dimensional space through kernel functions to generate the
optimal hyperplane, which maximizes the marginal distance for
both classes and minimizes the classification error. The support
vectors are the data points in each class that come closest to the
hyperplane and form the margin boundary.

For each algorithm of the four hierarchical multi-class
scenarios in the model development set, we tested a series of
values for the tuning procedures and determined the optimal
parameters based on the model performance. The training and
test sets in the model development set were adequately separated
using 10-fold cross-validation, where the training set in each

cross-validation iteration was resampled, whereas the test set
was only used to test the classification performance and obtain
the optimal model.

Model evaluation and temporal
validation

Seven metrics were quantified to compare the performance
of imaging features, clinical variables, and their multiple
combinations: sensitivity, specificity, accuracy, balanced
accuracy, F1 score, and area under the curve (AUC). The
temporal validation set was devoted to a final blindfolded
evaluation of the optimal model from the model development
set. The overall accuracy was the proportion of the four AD-
related populations correctly classified in the time verification
set.

Sensitivity = TP
/
(TP+ FN)

Specificity = TN
/
(TN+ FP)

Accuracy = (TP+ TN)
/
(TP+ FP+ TN+ FN)

Balanced accuracy = (Sensitivity+ Specificity)
/

2

F1 score = 2× TP
/
(2× TP+ FP+ FN)

where TP, true positive; TN, true negative; FP, false positive;
FN, false negative.

Results

Discriminative features

The degree of contribution of 40 discriminative features
was obtained by the dimension reduction of imaging features.
The specific weight values presented in Table 2 show that
the geometric properties of the top 10 different anatomical
structures are the FD of the lS_occipital_ant, the GI of
the rG_octemp_medParahip, and rG_cingulPostventral,
followed by the GI of the S_octemp_med_and_Lingual,
the FD of the rS_circular_insula_inf, lG_temp_supLateral,
rS_oc_sup_and_transversal, rG_cingul-Post-dorsal, and the
CTh of the lS_orbitalH_Shaped and rG_pariet_infAngular.

Classification performance

The overall accuracy of multiple combinations of different
classification features and ML algorithms in the temporal
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TABLE 2 Weight values of forty most important features by the dimension reduction of imaging features using the Destrieux parcellation protocol
proposed in August 2009 (FreeSurfer v4.5, aparc.a2009s).

aparc.a2009s
Index

Short name Anatomical name Hemisphere Geometric
properties

w |ln |w|| Weight
rank

6 G_and_S_cingulAnt Anterior part of cingulate gyrus and sulcus Right SD −4.038e− 3 5.512 40

7 G_and_S_cingulMidAnt Middle-anterior part of cingulate gyrus and sulcus Right SD −2.651e− 3 5.933 33

9 G_cingul-Post-dorsal Posterior-dorsal part of cingulate gyrus Left CTh 2.12e− 3 6.158 32

FD 2.95e− 4 8.128 8

Right CTh 6.672e− 4 7.312 16

10 G_cingulPostventral Posterior-ventral part of the cingulate gyrus
(isthmus of the cingulate gyrus)

Right GI 4.792e− 5 9.946 3

13 G_front_infOrbital Orbital part of inferior frontal gyrus Left CTh −4.306e− 4 7.750 11

17 G_Ins_lg_and_S_
cent_ins

Long insular gyrus and insulacentral sulcus Left FD 7.729e− 4 7.165 18

23 G_octemp_medParahip Parahippocampal gyrus, parahippocampal part of
medial occipito-temporal gyrus

Left CTh 9.782e− 4 6.930 21

Right CTh 3.16e− 3 5.758 37

GI −3.70e− 5 10.204 2

25 G_pariet_infAngular Angular gyrus Left CTh 1.237e− 3 6.695 25

Right CTh 3.828e− 4 7.868 10

34 G_temp_supLateral Lateral aspect of superior temporal gyrus Left FD 1.362e− 4 8.901 6

35 G_temp_supPlan_polar Planum polare of superior temporal gyrus Left GI 5.301e− 4 7.543 12

Right GI 6.002e− 4 7.418 13

41 Lat_Fispost Posterior ramus (or segment) of lateral sulcus (or
fissure)

Left SD 1.681e− 3 6.388 29

Right GI 7.468e− 4 7.200 17

42 Pole_occipital Occipital pole Right SD 6.576e− 4 7.327 15

43 Pole_temporal Temporal pole Right GI −8.033e− 4 7.127 19

46 S_cingulMarginalis Marginal branch (or part) of cingulate sulcus Left FD 3.597e− 3 5.628 38

48 S_circular_insula_inf Inferior segment of circular sulcus of insula Left GI 1.507e− 3 6.497 28

Right FD −1.220e− 4 9.011 5

GI 2.775e− 3 5.887 35

49 S_circular_insula_sup Superior segment of circular sulcus of insula Left FD 1.101e− 3 6.812 23

GI 1.407e− 3 6.566 26

Right FD 8.454e− 4 7.076 20

GI 2.718e− 3 5.908 34

58 S_oc_sup_and
_transversal

Superior occipital sulcus and transverse occipital
sulcus

Right FD 2.724e− 4 8.208 7

59 S_occipital_ant Anterior occipital sulcus and preoccipital notch
(temporo-occipital incisure)

Left FD 2.906e− 5 10.446 1

Right FD 1.063e− 3 6.846 22

60 S_octemp_lat Lateral occipito-temporal sulcus Right FD 1.707e− 3 6.373 30

61 S_octemp_med_and
_Lingual

Medial occipito-temporal sulcus (collateral sulcus)
and lingual sulcus

Left GI 1.191e− 4 9.035 4

64 S_orbitalH_Shaped Orbital sulci (H-shaped sulci) Left CTh −3.028e− 4 8.102 9

69 S_precentralsuppart Superior part of precentral sulcus Left FD 6.093e− 4 7.403 14

73 S_temporal_sup Superior temporal sulcus (parallel sulcus) Left CTh 1.218e− 3 6.711 24

FD 1.506e− 3 6.498 27

SD 3.923e− 3 5.541 39

Right FD 2.041e− 3 6.194 31

SD 3.006e− 3 5.807 36

CTh, cortical thickness; FD, fractal dimension; GI, gyrification index; SD, sulcus depth.
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FIGURE 2

Overall accuracy of the temporal validation set in four scenarios using seven machine learning (ML) algorithms. AD, Alzheimer’s disease; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; NC, normal cognition; KNN, K-nearest neighbor; LR, logistic regression;
NB, naive Bayes; RF, random forest; SVM, support vector machine.

validation set is shown in Figure 2. Among the four hierarchical
multi-class scenarios, the “clinical+imaging” features showed
the greatest improvement in overall accuracy, all above 0.8,
thereby demonstrating the superiority and necessity of the
combination. The “clinical_r + imaging” and “clinical” features
came next, exhibiting a difference in overall accuracy to the
“clinical + imaging” features of 0.001–0.235 and 0.009–0.115,
respectively. The overall accuracy for “clinical_r” features alone
ranged from 0.6 to 0.8, while the “imaging” features performed
poorly. Regardless of the classification scenario, AdaBoost
always maintained a more robust performance than the other
algorithms, with relatively small overall accuracy differences
among different features. Details of all classification results
using AdaBoost are provided in the Supplementary Material

(Tables 1–4). For the current study, we only used the robust
classification results of the AdaBoost applied to the AD-LMCI-
NC-EMCI scenario as an example (see the radar charts in
Figure 3). The “clinical + imaging” features still performed
best in multiple binary classification tasks, followed by the
“clinical” features.

For the binary classification task AD vs.
(NC + EMCI + LMCI) in the model development set, all
evaluation indicators were above 0.85. The performance of
the “clinical + imaging” features was generally similar to
that of the “clinical” features, close to one. Although the
AUC of the “clinical_r + imaging” features was smaller
than that of the “clinical_r” features, the former performed
better on the whole. The AUC of the “imaging” features
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FIGURE 3

Radar charts of binary classification tasks based on imaging features, clinical variables, and their multiple combinations in the
“AD-LMCI-EMCI-NC” scenario using the AdaBoost algorithm. AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; NC, normal cognition; KNN, K-nearest neighbor; LR, logistic regression; NB, Naive Bayes; RF, random forest; SVM,
support vector machine; B-accuracy, balanced accuracy, AUC, area under the curve.

was approximately 0.94. In the temporal validation set, the
performance of the “clinical + imaging” was better but still
similar to that of the “clinical” features. The performance of the
“imaging” features was higher than that of the “clinical_r” and
“clinical_r + imaging” features. The “clinical_r + imaging” had
a lower accuracy and F1 score.

For the binary classification task LMCI vs. (NC + EMCI)
in the model development set, the order of the
evaluation indicators for the different features was clear:
“clinical + imaging” > “clinical” > “clinical_r + imaging” >

“imaging” > “clinical_r.” The AUC of the “clinical + imaging”
features was approximately 0.9. In the temporal validation
set, the accuracy of the different kinds of features was similar.
The AUC and balanced accuracy of the “clinical+imaging”
features were the highest, while the “imaging” features had the
highest F1 score.

For the binary classification task NC vs. EMCI, the
“clinical+imaging” and clinical features had almost the
same performance in both the model development and
the time validation set, and the same was found for

the “clinical_r + imaging” and “clinical_r” features. The
accuracy and F1 scores of the “imaging” features in the
model development set were higher than those of the
“clinical_r + imaging” and “clinical_r” features, while the AUC
and balanced accuracy were higher in the time verification set.

In sum, “clinical + imaging” feature combination improved
the classification performance of the AdaBoost algorithm,
with an overall accuracy of 0.877 in the temporal validation
set (Table 3).

Feature importance

In the AD-LMCI-NC-EMCI scenario, the RF
algorithm generated the feature importance scores
via an out-of-bag error estimate among the binary
classification tasks using “clinical + imaging” features,
as shown in the Supplementary Material (Figure 1).
The mean importance scores of the clinical features
were above 20 on the three binary tasks, significantly
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TABLE 3 Hierarchical multi-class results of imaging features, clinical variables, and their multiple combinations in the “AD-LMCI-NC-EMCI”
scenario using the AdaBoost algorithm (clinical_r refers to clinical features removing MMSE and CDR).

Dataset Features Classifiers SEN SPE Accuracy B-accuracy F1 AUC

Model development Clinical+imaging AD vs. (NC + EMCI + LMCI) 0.996 0.972 0.984 0.984 0.983 0.994

LMCI vs. (NC + EMCI) 0.895 0.765 0.829 0.830 0.839 0.894

NC vs. EMCI 0.934 1.000 0.967 0.967 0.965 0.983

Clinical_r+imaging AD vs. (NC + EMCI + LMCI) 0.942 0.916 0.930 0.929 0.930 0.945

LMCI vs. (NC + EMCI) 0.757 0.742 0.749 0.750 0.751 0.806

NC vs. EMCI 0.800 0.751 0.774 0.776 0.780 0.857

Clinical AD vs. (NC + EMCI + LMCI) 0.979 0.972 0.976 0.976 0.975 0.992

LMCI vs. (NC + EMCI) 0.903 0.662 0.782 0.783 0.805 0.829

NC vs. EMCI 0.937 1.000 0.969 0.969 0.967 0.987

Clinical_r AD vs. (NC + EMCI + LMCI) 0.947 0.884 0.915 0.916 0.916 0.956

LMCI vs. (NC + EMCI) 0.620 0.723 0.671 0.672 0.650 0.718

NC vs. EMCI 0.828 0.707 0.768 0.768 0.781 0.835

Imaging AD vs. (NC + EMCI + LMCI) 0.890 0.863 0.877 0.877 0.877 0.937

LMCI vs. (NC + EMCI) 0.707 0.685 0.697 0.696 0.699 0.740

NC vs. EMCI 0.580 0.618 0.600 0.599 0.590 0.646

Temporal validation Clinical+imaging AD vs. (NC + EMCI + LMCI) 0.933 0.956 0.953 0.945 0.814 0.945

LMCI vs. (NC + EMCI) 0.711 0.820 0.805 0.766 0.498 0.765

NC vs. EMCI 0.897 0.891 0.896 0.894 0.932 0.894

Clinical_r+imaging AD vs. (NC + EMCI + LMCI) 1.000 0.020 0.127 0.510 0.201 0.510

LMCI vs. (NC + EMCI) 0.193 0.863 0.772 0.528 0.187 0.528

NC vs. EMCI 1.000 0.000 0.791 0.500 0.883 0.500

Clinical AD vs. (NC + EMCI + LMCI) 0.920 0.956 0.952 0.938 0.807 0.938

LMCI vs. (NC + EMCI) 0.036 0.994 0.864 0.515 0.067 0.515

NC vs. EMCI 0.894 0.890 0.894 0.892 0.930 0.893

Clinical_r AD vs. (NC + EMCI + LMCI) 0.440 0.990 0.930 0.715 0.579 0.715

LMCI vs. (NC + EMCI) 0.590 0.795 0.767 0.693 0.408 0.693

NC vs. EMCI 0.998 0.055 0.801 0.527 0.888 0.526

Imaging AD vs. (NC + EMCI + LMCI) 0.867 0.912 0.907 0.890 0.670 0.889

LMCI vs. (NC + EMCI) 0.663 0.791 0.774 0.727 0.727 0.444

NC vs. EMCI 0.635 0.627 0.634 0.631 0.733 0.631

AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; NC, normal cognition; SEN, sensitivity; SPE, specificity; B-accuracy, balanced
accuracy; AUC, area under the curve.

higher than those of the imaging features. Clinical
dementia rating scores were primarily associated with
AD multi-class classification, with feature importance
scores of up to 85 for the binary classification task
NC vs. EMCI. For the binary classification task AD vs.
(NC + EMCI + LMCI), the top five important imaging
features were the CTh of the bilateral G_octemp_medParahip
and G_pariet_infAngular and left S_temporal_sup. For
the binary classification task LMCI vs. (NC + EMCI), the
top five important imaging features were the CTh of the
bilateral G_cingul-Post-dorsal and G_octemp_medParahip
and the SD of the left S_temporal_sup. For the binary
classification task NC vs. EMCI, the important imaging
features were the CTh of the right G_pariet_infAngular
and the left S_temporal_sup and the GI of the left
S_circular_insula_inf.

In brief, each binary classifier exhibited good discriminative
ability, and combined features improved the classification
performance of the hierarchical multi-class framework.

Discussion

In this study, a hierarchical multi-class framework for the
auxiliary diagnosis of AD was created using combined clinical
and imaging features, with an overall accuracy of 0.877 in the
temporal validation set. The CDR score was the primary clinical
variable associated with AD-related populations. The most
discriminative imaging features included the bilateral CTh of the
dorsal part of the posterior cingulate gyrus, parahippocampal
gyrus (PHG), parahippocampal part of the medial occipito-
temporal gyrus, and angular gyrus, the GI of the left inferior
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segment of the insula circular sulcus, and the CTh and SD of
the left superior temporal sulcus (STS).

Brain surface research

Cortical surface properties extracted in a vertex-wise
manner can identify the neuroanatomical differences among
different AD-related populations (Ma et al., 2020; Basheera and
Ram, 2020) and provide important Supplementary information
about the shape of brain structures rather than size (e.g.,
volume) (Ieva et al., 2015). Surface-based morphometry has the
advantages of not only being visually simplified by inflation and
fully automated labeling of MRI scans, which provides better
repeatability and practicality (Yotter et al., 2011c) but also of
using cortical geometry to drive cross-disciplinary registration,
thereby fully accounting for individual differences in cortical
anatomy (Fischl et al., 2015).

Previous studies have suggested that cortical folding is
associated with cognitive function in the elderly (Liu et al.,
2012). King et al. (2010) have discovered the potential of FD
as a quantitative marker of cerebral cortical structure in mild
AD. Núñez et al. (2020) reported that a higher GI of the insular
cortex was strongly associated with better memory function and
semantic fluency only in patients with AD. Further, Park et al.
(2012) found that SD may contain important information for
distinguishing AD from MCI. Im et al. (2008) suggested that
patients with MCI and AD exhibited a significantly shallower
SD compared to NC. To our best knowledge, the GI and SD
are less widely investigated in AD-related studies compared to
CTh, and less attention has been paid to cortical morphological
measurements in classification tasks. The GI and SD included
in this study can, therefore, serve as good measures of cortical
folding complexity. Notably, the geometric properties of the
anatomical structures identified in this study may permit
more comprehensive indexing of relevant information in the
cerebral cortex.

Important feature contribution

Neuroimaging techniques may facilitate the tracking of
disease progression due to their excellent spatial resolution,
high availability, noninvasive nature, and ability to contrast
different soft tissues (Altaf et al., 2018). Schwarz et al. (2016)
have recommended a composite of thickness of the PHG,
angular gyrus, and temporal lobe as a signature measurement
for AD. A 2012 meta-analysis revealed extensive gray matter
defects in the PHG, temporal lobe, cingulate gyrus, and insular
cortex in patients with AD (Vasconcelos et al., 2011). Dickerson
et al. (2001) have failed to identify significant atrophy of PHG
in patients with very mild AD, while Echávarri et al. (2011)
proposed that PHG is a highly sensitive discriminator for
detecting AD, especially during the preclinical phase. Similarly
to the latter, we observed that not only the PHG but also
the bilateral CTh in the parahippocampal part of the medial
occipito-temporal gyrus were extremely important imaging
features in both the AD vs. (NC + EMCI + LMCI) and the LMCI
vs. (NC + EMCI) classification tasks, as was the right CTh in the
angular gyrus for the NC vs. EMCI classification task.

The posterior cingulate cortex is a highly connected and
metabolically active brain region, appearing as a particularly
sensitive hub for the pathological progression of AD. Lehmann
et al. (2010) detected a decrease in CTh in the posterior cingulate
cortex in AD pathology, and Mutlu et al. (2016) observed
hypometabolism and atrophy in the dorsal part of the posterior
cingulate cortex. Subtly different from the findings of previous
studies, we identified the bilateral CTh of the dorsal part of the
posterior cingulate gyrus as an important geometric feature to
distinguish AD-related populations. Currently, there is a lack of
research on the relationship between the insula circular sulcus
and cognitive impairment. This study is the first to find that the
GI of the left inferior segment of the insula circular sulcus is an
important imaging feature to distinguish NC from EMCI.

Sauer et al. (2006) proposed that the number of STS neurons
decreases by 50% in AD and that functional changes in the STS

TABLE 4 Classification performance of different studies based on cortical morphological measurements.

References Data set Participants Algorithm Features Overall accuracy

Park et al. (2012) OASIS 25 AD/25 MCI/50 NC SVM CTh + SD 0.77 (AD/NC) 0.69
(MCI/NC) 0.63 (AD/MCI)

Liu et al. (2013) ADNI 83 AD/137 NC Elastic net + locally linear embedding CTh 0.85 (AD/NC)

Bron et al. (2015) Multi-center dataset 103 AD/122 MCI/129
NC

Sørensen-equal Volume, thickness, shape,
and intensity

0.63 (AD/MCI/NC)

Ma et al. (2016) ADNI 15 AD/23 MCI/26 NC SVM CTh 0.65 (AD/MCI/NC)

Ma et al. (2020) ADNI 30 MCI/16 NC RF CTh + FD + GI + SD 0.80

Xuanwu 27 MCI/32 NC 0.80

Current work ADNI 75 AD/83 LMCI/110
EMCI/417 NC

AdaBoost CTh + FD + GI + SD +
clinical features

0.877

AD, Alzheimer’s disease; MCI, mild cognitive impairment; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; NC, normal cognition; OASIS, the open access
series of imaging studies; ADNI, Alzheimer’s Disease Neuroimaging Initiative; IXI, Information eXtraction from Images; SVM, support vector machine; CTh, cortical thickness; FD, fractal
dimension; GI, gyrification index; SD, sulcus depth.
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can be detected at the early stage of neuronal loss, prior to visible
atrophy. Consistent with previous studies, we found that the
CTh and SD of the left STS were important imaging features
in the NC vs. EMCI and LMCI vs. (NC + EMCI) classification
tasks, respectively.

Neuropsychological assessments provide essential
information regarding the risk of cognitive impairment
and remain the first line of choice for neurologists, whereas
imaging features offer insight into cortical degeneration in
AD. Uysal and Ozturk (2020) demonstrated that the efficient
use of the brain with increasing age promotes the formation
of new neuronal pathways and increases brain plasticity,
resulting in elderly individuals with cortical atrophy but
without cognitive impairment; this renders the performance of
multi-class AD classification using structural MRI challenging.
Although the subtlety of brain changes presents challenges
for imaging-based classification, the combined use of clinical
and imaging features is promising. Our study demonstrates
that the combination of clinical and imaging features performs
better than single features, suggesting that these features are
both indispensable and complementary, thus leading to good
diagnostic performance for AD.

Hierarchical classification

Although researchers in the field of cognitive science have
predominantly focused on relevant anatomical regions,
high diagnostic accuracy remains essential for clinical
purposes (Klöppel et al., 2012). Machine learning has
gained recent interest for providing a second opinion for
various neurodegenerative diseases, particularly for AD,
which encompasses the majority of clinical neuroimaging
research. To date, few studies have focused on cortical
morphometry for classification tasks, let alone the multi-class
of AD. Compared to the only two existing AD classification
studies on cortical morphology, our results have higher
accuracy, as shown in Table 4. Park et al. (2012) adopted
CTh and SD as features for the implementation of simple
multiple binary classifications. Liu et al. (2013) used the
CTh of selected brain regions to differentiate NC from
AD, and obtained an accuracy of 0.85. Bron et al. (2015)
created an optimal algorithm with an accuracy of 0.63 using
a combination of features, namely, volume, CTh, shape, and
intensity on a multi-center dataset. Ma et al. (2016) used
CTh as the classification feature for three-way classification
and achieved a 0.65 accuracy, while Ma et al. (2020) utilized
surface-based morphological measurements such as FD,
SD, and CTh to distinguish NC from MCI, which did not
improve classification accuracy in AD-related populations.
The hierarchical multi-class framework established in our
study shows good prospects for application in the auxiliary
diagnosis of AD.

The current study has several limitations. First, the tgLASSO
method we adopted for the model development required each
participant to have corresponding structural MRI scans and
MMSE scores at four different time points, which limited the
size of our sample, owing to the concurrent need for both
parameters. Second, due to their invasiveness, high cost, and
poor availability, PET scans were not included in this study.
Third, sample characteristics of the ADNI database resulted in
differences between participants in the model development and
the time validation set, the latter being younger and having
more years of education. In future studies, we intend to improve
our classification framework by expanding the sample size
and including multimodal imaging data to enhance reliability,
stability, and applicability for more comprehensive analyses.

This study developed an effective hierarchical multi-class
framework with high accuracy, underscoring the utility of
combining cognitive variables with imaging features and
the reliability of surface-based morphometry. In conclusion,
combining neuroimaging and clinical information with ML
may facilitate more accurate early diagnosis of AD in clinical
practice, reduce the unnecessary deployment of therapeutics,
and streamline the workflow of clinicians, especially for cases
requiring frequent monitoring or complex decision-making.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: http://adni.loni.
usc.edu.

Ethics statement

The studies involving human participants were reviewed
and approved by the Alzheimer’s Disease Neuroimaging
Initiative. The patients/participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication
of any potentially identifiable images or data included
in this article.

The Alzheimer’s disease
neuroimaging initiative (ADNI)

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but
did not participate in the analysis or writing of this report.

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.935055
http://adni.loni.usc.edu
http://adni.loni.usc.edu
adni.loni.usc.edu
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-935055 August 4, 2022 Time: 15:50 # 13

Qin et al. 10.3389/fnagi.2022.935055

A complete listing of ADNI investigators can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf.

Author contributions

YQ, XG, and HY contributed to the conception and design
of the study. YQ, YT, HH, and JC organized the database. YQ,
ZF, LL, and YL performed the statistical analysis. YQ wrote
the manuscript. All authors contributed to manuscript revision,
read, and approved the submitted version.

Funding

This study was funded by the National Natural Science
Foundation of China (NSFC) grant 81973154 to HY, and
the Natural Science Foundation for Young Scientists of
Shanxi Province, China grant 201901D211330 to HH and
202103021223242 to JC. Data collection and sharing for this
project were funded by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense
award number W81XWH-12-2-0012). ADNI was funded
by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation;
Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; Euroimmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE HealtNCare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson
& Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org).

Acknowledgments

We thank Rhianna Goozee, from Liwen Bianji, Edanz
Editing China (www.liwenbianji.cn/ac) for editing the
English text of a draft of this manuscript. The grantee
organization is the Northern California Institute for Research
and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University
of Southern California. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of
Southern California. Before interviewing each participant,
written informed consent including aims and methods such
as physical and neurological examinations was obtained
from all participants. The authors are also grateful to the
participants for their support and cooperation in making this
research possible.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnagi.2022.935055/full#supplementary-material

References

Aisen, P. S., Petersen, R. C., Donohue, M. C., Gamst, A., Raman, R., Thomas,
R. G., et al. (2010). Clinical core of the Alzheimer’s disease neuroimaging initiative:
Progress and plans. Alzheimers Dement. 6, 239–246. doi: 10.1016/j.jalz.2010.03.006

Aisen, P. S., Petersen, R. C., Donohue, M., and Weiner, M. W. (2015).
Alzheimer’s disease neuroimaging initiative 2 clinical core: Progress and plans.
Alzheimers Dement. 11, 734–739. doi: 10.1016/j.jalz.2015.05.005

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2022.935055
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.fnih.org
http://www.liwenbianji.cn/ac
https://www.frontiersin.org/articles/10.3389/fnagi.2022.935055/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.935055/full#supplementary-material
https://doi.org/10.1016/j.jalz.2010.03.006
https://doi.org/10.1016/j.jalz.2015.05.005
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-935055 August 4, 2022 Time: 15:50 # 14

Qin et al. 10.3389/fnagi.2022.935055

Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., and Majid, M. (2018). Multi-class
Alzheimer’s disease classification using image and clinical features. Biomed. Signal
Process. Control 43, 64–74. doi: 10.1016/j.bspc.2018.02.019

Alzheimer’s Association (2022). 2022 Alzheimer’s disease facts and figures.
Alzheimers Dement. 18, 700–789. doi: 10.1002/alz.12638

Basheera, S., and Ram, M. S. S. (2020). A novel CNN based Alzheimer’s disease
classification using hybrid enhanced ICA segmented gray matter of MRI. Comput.
Med. Imag. Graph. 81:101713. doi: 10.1016/j.compmedimag.2020.101713

Bron, E. E., Smits, M., van der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens,
P., et al. (2015). Standardized evaluation of algorithms for computer-aided
diagnosis of dementia based on structural MRI: The CAD Dementia challenge.
Neuroimage 111, 562–579. doi: 10.1016/j.neuroimage.2015.01.048

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2011).
SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16,
321–357. doi: 10.1613/jair.953

Dahnke, R., Yotter, R. A., and Gaser, C. (2013). Cortical thickness and central
surface estimation. Neuroimage 65, 336–348. doi: 10.1016/j.neuroimage.2012.09.
050

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation
of human cortical gyri and sulci using standard anatomical nomenclature.
Neuroimage 53, 1–15. doi: 10.1016/j.neuroimage.2010.06.010

Dickerson, B. C., Goncharova, I., Sullivan, M. P., Forchetti, C., Wilson, R. S.,
Bennett, D. A., et al. (2001). MRI-derived entorhinal and hippocampal atrophy
in incipient and very mild Alzheimer’s disease. Neurobiol. Aging 22, 747–754.
doi: 10.1016/s0197-4580(01)00271-8

Echávarri, C., Aalten, P., Uylings, H. B. M., Jacobs, H. I. L., Visser, P. J.,
Gronenschild, E. H. B. M., et al. (2011). Atrophy in the parahippocampal gyrus
as an early biomarker of Alzheimer’s disease. Brain Struct. Funct. 215, 265–271.
doi: 10.1007/s00429-010-0283-8

Essen, D. C. V. (2005). A Population-Average, Landmark- and Surface-based
(PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662. doi: 10.1016/j.
neuroimage.2005.06.058

Fischl, B., Sereno, M. I., Tootell, R., and Dale, A. M. (2015). High-resolution
intersubject averaging and a coordinate system for the cortical surface. Hum. Brain
Mapp. 8, 272–284. doi: 10.1002/(sici)1097-0193(1999)8:4&lt;272::aid-hbm10&gt;
3.0.co;2-4

GBD 2019 Dementia Forecasting Collaborators (2022). Estimation of the global
prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis
for the global burden of disease study. Lancet Public Health 7, e105–e125. doi:
10.1016/S2468-2667(21)00249-8

Hu, L. Y., Huang, M. W., Ke, S. W., and Tsai, C. F. (2016). The distance function
effect on k-nearest neighbor classification for medical datasets. SpringerPlus
5:1304. doi: 10.1186/s40064-016-2941-7

Ieva, A. D., Esteban, F. J., Grizzi, F., Klonowski, W., and Martínlandrove, M.
(2015). Fractals in the neurosciences, Part II: Clinical applications and future
perspectives. Neuroscientist 21, 30–43. doi: 10.1177/1073858413513928

Im, K., Lee, J. M., Sang, W. S., Sun, H. K., Sun, I. K., and Na,
D. L. (2008). Sulcal morphology changes and their relationship with cortical
thickness and gyral white matter volume in mild cognitive impairment and
Alzheimer’s disease. Neuroimage 43, 103–113. doi: 10.1016/j.neuroimage.2008.07.
016

King, R. D., Brown, B., Hwang, M., Jeon, T., and George, A. T. (2010). Fractal
dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage
53, 471–479. doi: 10.1016/j.neuroimage.2010.06.050

Klöppel, S., Abdulkadir, A., Jack, C. R., Koutsouleris, N., Mourão-Miranda, J.,
and Vemuri, P. (2012). Diagnostic neuroimaging across diseases. Neuroimage 61,
457–463. doi: 10.1016/j.neuroimage.2011.11.002

Lehmann, M., Rohrer, J. D., Clarkson, M. J., Ridgway, G. R., Scahill, R. I., Modat,
M., et al. (2010). Reduced cortical thickness in the posterior cingulate gyrus is
characteristic of both typical and atypical Alzheimer’s disease. J. Alzheimers Dis.
20, 587–598. doi: 10.3233/JAD-2010-1401

Lin, E., Lin, C. H., and Lane, H. Y. (2022). A bagging ensemble machine learning
framework to predict overall cognitive function of schizophrenia patients with
cognitive domains and tests. Asian J Psychiatr. 69, 103008. doi: 10.1016/j.ajp.2022.
103008

Liu, M., Zhang, D., and Shen, D. (2015). View-centralized multi-atlas
classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36, 1847–1865.
doi: 10.1002/hbm.22741

Liu, T., Lipnicki, D. M., Zhu, W., Tao, D., Zhang, C., Cui, Y., et al. (2012).
Cortical gyrification and sulcal spans in early stage Alzheimer’s disease. PLoS One
7:e31083. doi: 10.1371/journal.pone.0031083

Liu, X., Tosun, D., Weiner, M. W., Schuff, N., and Alzheimer’s Disease
Neuroimaging Initiative (2013). Locally linear embedding (LLE) for MRI

based Alzheimer’s disease classification. Neuroimage 83, 148–157. doi: 10.1016/j.
neuroimage.2013.06.033

Ma, X., Li, Z., Jing, B., Liu, H., Li, D., Li, H., et al. (2016). Identify the
atrophy of Alzheimer’s disease, mild cognitive impairment and normal aging using
morphometric MRI analysis. Front. Aging Neurosci. 8:243. doi: 10.3389/fnagi.2016.
00243

Ma, Z., Jing, B., Li, Y., Yan, H., Li, Z., Ma, X., et al. (2020). Identifying
mild cognitive impairment with random forest by integrating multiple MRI
morphological metrics. J. Alzheimers Dis. 73, 991–1002. doi: 10.3233/JAD-190715

Mishra, R., and Li, B. (2020). The application of artificial intelligence in the
genetic study of Alzheimer’s disease. Aging Dis. 11, 1567–1584. doi: 10.14336/AD.
2020.0312

Moore, P. J., Lyons, T. J., Gallacher, J., and Ginsberg, S. D. (2019). Random forest
prediction of Alzheimer’s disease using pairwise selection from time series data.
PLoS One 14:e0211558. doi: 10.1371/journal.pone.0211558

Mutlu, J., Landeau, B., Tomadesso, C., de Flores, R., Mézenge, F., de La Sayette,
V., et al. (2016). Connectivity disruption, atrophy, and hypometabolism within
posterior cingulate networks in Alzheimer’s disease. Front. Neurosci. 10:582. doi:
10.3389/fnins.2016.00582

Núñez, C., Callén, A., Lombardini, F., Compta, Y., and Stephan, C. O. (2020).
Different cortical gyrification patterns in AD and impact on memory performance.
Ann. Neurol. 88, 67–80. doi: 10.1002/ana.25741

Park, H., Yang, J. J., Seo, J., and Lee, J. M. (2012). Dimensionality reduced cortical
features and their use in the classification of Alzheimer’s disease and mild cognitive
impairment. Neurosci. Lett. 529, 123–127. doi: 10.1016/j.neulet.2012.09.011

Rigatti, S. J. (2017). Random Forest. J. Insur. Med. 47, 31–39. doi: 10.17849/
insm-47-01-31-39.1

Sauer, J., ffytche, D. H., Ballard, C., Brown, R. G., and Howard, R. (2006).
Differences between Alzheimer’s disease and dementia with Lewy bodies: An fMRI
study of task-related brain activity. Brain 129(Pt. 7), 1780–1788. doi: 10.1093/
brain/awl102

Schwarz, C. G., Gunter, J. L., Wiste, H. J., Przybelski, S. A., Weigand, S. D.,
Ward, C. P., et al. (2016). A large-scale comparison of cortical thickness and
volume methods for measuring Alzheimer’s disease severity. NeuroImage Clin. 11,
802–812. doi: 10.1016/j.nicl.2016.05.017

Sugahara, S., and Ueno, M. (2021). Exact learning augmented Naive Bayes
classifier. Entropy (Basel) 23:1703. doi: 10.3390/e23121703

Uysal, G., and Ozturk, M. (2020). “Classifying early and late mild cognitive
impairment stages of Alzheimer’s disease by analyzing different brain areas,” in
Proceedings of the 2020 Medical Technologies Congress (TIPTEKNO), (Piscataway,
NJ: IEEE), 1–4. doi: 10.1109/TIPTEKNO50054.2020.9299217

Vasconcelos, L. G., Jackowski, A. P., Oliveira, M. O., Flor, Y. M., Bueno,
O. F., and Brucki, S. M. (2011). Voxel-based morphometry findings in
Alzheimer’s disease: Neuropsychiatric symptoms and disability correlations -
preliminary results. Clinics 66, 1045–1050. doi: 10.1590/s1807-5932201100060
0021

Vemuri, P., Gunter, J. L., Senjem, M. L., Whitwell, J. L., Kantarci, K., Knopman,
D. S., et al. (2008). Alzheimer’s disease diagnosis in individual subjects using
structural MR images: Validation studies. Neuroimage 39, 1186–1197. doi: 10.
1016/j.neuroimage.2007.09.073

Vong, C. M., and Du, J. (2020). Accurate and efficient sequential ensemble
learning for highly imbalanced multi-class data. Neural Netw. 128, 268–278. doi:
10.1016/j.neunet.2020.05.010

Yang, Z., Zhuang, X., Bird, C., Sreenivasan, K., Mishra, V., Banks, S., et al.
(2019). Performing sparse regularization and dimension reduction simultaneously
in multimodal data fusion. Front. Neurosci. 13:642. doi: 10.3389/fnins.2019.00642

Yotter, R. A., Dahnke, R., Thompson, P. M., and Gaser, C. (2011a). Topological
correction of brain surface meshes using spherical harmonics. Hum. Brain Mapp.
32, 1109–1124. doi: 10.1002/hbm.21095

Yotter, R. A., Nenadic, I., Ziegler, G., Thompson, P. M., and Gaser, C. (2011b).
Local cortical surface complexity maps from spherical harmonic reconstructions.
Neuroimage 56, 961–973. doi: 10.1016/j.neuroimage.2011.02.007

Yotter, R. A., Thompson, P. M., and Gaser, C. (2011c). Algorithms
to improve the reparameterization of spherical mappings of brain surface
meshes. J. Neuroimaging 21, e134–e147. doi: 10.1111/j.1552-6569.2010.00
484.x

Zhang, D., Liu, J., and Shen, D. (2012). Temporally-constrained group sparse
learning for longitudinal data analysis. Med. Image Comput. Assist. Interv. 15(Pt.
3), 264–271. doi: 10.1007/978-3-642-33454-2_33

Zille, P., Calhoun, V. D., Stephen, J. M., Wilson, T. W., and Wang, Y. P. (2017).
Fused estimation of sparse connectivity patterns from rest fMRI—application
to comparison of children and adult brains. IEEE Trans. Med. Imaging 37,
2165–2175. doi: 10.1109/TMI.2017.2721640

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2022.935055
https://doi.org/10.1016/j.bspc.2018.02.019
https://doi.org/10.1002/alz.12638
https://doi.org/10.1016/j.compmedimag.2020.101713
https://doi.org/10.1016/j.neuroimage.2015.01.048
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/s0197-4580(01)00271-8
https://doi.org/10.1007/s00429-010-0283-8
https://doi.org/10.1016/j.neuroimage.2005.06.058
https://doi.org/10.1016/j.neuroimage.2005.06.058
https://doi.org/10.1002/(sici)1097-0193(1999)8:4&lt;272::aid-hbm10&gt;3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0193(1999)8:4&lt;272::aid-hbm10&gt;3.0.co;2-4
https://doi.org/10.1016/S2468-2667(21)00249-8
https://doi.org/10.1016/S2468-2667(21)00249-8
https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1177/1073858413513928
https://doi.org/10.1016/j.neuroimage.2008.07.016
https://doi.org/10.1016/j.neuroimage.2008.07.016
https://doi.org/10.1016/j.neuroimage.2010.06.050
https://doi.org/10.1016/j.neuroimage.2011.11.002
https://doi.org/10.3233/JAD-2010-1401
https://doi.org/10.1016/j.ajp.2022.103008
https://doi.org/10.1016/j.ajp.2022.103008
https://doi.org/10.1002/hbm.22741
https://doi.org/10.1371/journal.pone.0031083
https://doi.org/10.1016/j.neuroimage.2013.06.033
https://doi.org/10.1016/j.neuroimage.2013.06.033
https://doi.org/10.3389/fnagi.2016.00243
https://doi.org/10.3389/fnagi.2016.00243
https://doi.org/10.3233/JAD-190715
https://doi.org/10.14336/AD.2020.0312
https://doi.org/10.14336/AD.2020.0312
https://doi.org/10.1371/journal.pone.0211558
https://doi.org/10.3389/fnins.2016.00582
https://doi.org/10.3389/fnins.2016.00582
https://doi.org/10.1002/ana.25741
https://doi.org/10.1016/j.neulet.2012.09.011
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.1093/brain/awl102
https://doi.org/10.1093/brain/awl102
https://doi.org/10.1016/j.nicl.2016.05.017
https://doi.org/10.3390/e23121703
https://doi.org/10.1109/TIPTEKNO50054.2020.9299217
https://doi.org/10.1590/s1807-59322011000600021
https://doi.org/10.1590/s1807-59322011000600021
https://doi.org/10.1016/j.neuroimage.2007.09.073
https://doi.org/10.1016/j.neuroimage.2007.09.073
https://doi.org/10.1016/j.neunet.2020.05.010
https://doi.org/10.1016/j.neunet.2020.05.010
https://doi.org/10.3389/fnins.2019.00642
https://doi.org/10.1002/hbm.21095
https://doi.org/10.1016/j.neuroimage.2011.02.007
https://doi.org/10.1111/j.1552-6569.2010.00484.x
https://doi.org/10.1111/j.1552-6569.2010.00484.x
https://doi.org/10.1007/978-3-642-33454-2_33
https://doi.org/10.1109/TMI.2017.2721640
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Hierarchical multi-class Alzheimer's disease diagnostic framework using imaging and clinical features
	Introduction
	Materials and methods
	Study sample
	Overview of the multi-class framework
	Magnetic resonance imaging acquisition
	Magnetic resonance imaging feature extraction
	Magnetic resonance imaging feature selection
	Multi-class classification
	Hierarchical framework
	Classification algorithms

	Model evaluation and temporal validation

	Results
	Discriminative features
	Classification performance
	Feature importance

	Discussion
	Brain surface research
	Important feature contribution
	Hierarchical classification

	Data availability statement
	Ethics statement
	The Alzheimer's disease neuroimaging initiative (ADNI)
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


